Homomorphically encrypted gradient descent algorithms for quadratic programming
In this paper, we evaluate the different fully homomorphic encryption schemes, propose an implementation, and numerically analyze the applicability of gradient descent algorithms to solve quadratic programming in a homomorphic encryption setup. The limit on the multiplication depth of homomorphic en...
Hoofdauteurs: | Bertolace, A, Gatsis, K, Margellos, K |
---|---|
Formaat: | Conference item |
Taal: | English |
Gepubliceerd in: |
IEEE
2024
|
Gelijkaardige items
-
Cloud-based quadratic optimization with partially homomorphic encryption
door: Alexandru, AB, et al.
Gepubliceerd in: (2020) -
Privacy-aware quadratic optimization using partially homomorphic encryption
door: Shoukry, Y, et al.
Gepubliceerd in: (2016) -
Robust optimization for adversarial learning with finite sample complexity guarantees
door: Bertolace, A, et al.
Gepubliceerd in: (2024) -
Implementing the Grover algorithm in homomorphic encryption schemes
door: Pablo Fernández, et al.
Gepubliceerd in: (2024-11-01) -
Homomorphic Encryption on GPU
door: Ali Sah Ozcan, et al.
Gepubliceerd in: (2023-01-01)