Multifidelity approximate Bayesian computation with sequential Monte Carlo parameter sampling
Multifidelity approximate Bayesian computation (MF-ABC) is a likelihood-free technique for parameter inference that exploits model approximations to significantly increase the speed of ABC algorithms (Prescott and Baker, 2020). Previous work has considered MF-ABC only in the context of rejection sam...
Hlavní autoři: | , |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Society for Industrial and Applied Mathematics
2021
|