Multifidelity approximate Bayesian computation with sequential Monte Carlo parameter sampling

Multifidelity approximate Bayesian computation (MF-ABC) is a likelihood-free technique for parameter inference that exploits model approximations to significantly increase the speed of ABC algorithms (Prescott and Baker, 2020). Previous work has considered MF-ABC only in the context of rejection sam...

Повний опис

Бібліографічні деталі
Автори: Prescott, TP, Baker, RE
Формат: Journal article
Мова:English
Опубліковано: Society for Industrial and Applied Mathematics 2021