On smoothing and inference for topic models
Latent Dirichlet analysis, or topic modeling, is a flexible latent variable framework for modeling high-dimensional sparse count data. Various learning algorithms have been developed in recent years, including collapsed Gibbs sampling, variational inference, and maximum a posteriori estimation, and...
Hlavní autoři: | , , , |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2009
|