Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity
The bifurcation of asymmetric superconducting solutions from the normal solution is considered for the one-dimensional Ginzburg--Landau equations by the methods of formal asymptotics. The behavior of the bifurcating branch depends on the parameters d, the size of the superconducting slab, and $\kapp...
Główni autorzy: | Aftalion, A, Chapman, S |
---|---|
Format: | Journal article |
Wydane: |
2000
|
Podobne zapisy
-
Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity
od: Aftalion, A, i wsp.
Wydane: (2000) -
Asymptotic analysis of the bifurcation diagram for symmetric one-dimensional solutions of the Ginzburg-Landau equations
od: Aftalion, A, i wsp.
Wydane: (1999) -
ASYMPTOTIC ANALYSIS OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY - REDUCTION TO A FREE-BOUNDARY MODEL
od: Chapman, S
Wydane: (1995) -
Bifurcations of Nonconstant Solutions of the Ginzburg-Landau Equation
od: Norimichi Hirano, i wsp.
Wydane: (2012-01-01) -
Travelling waves bifurcation of the modified Ginzburg-Landau's equation
od: A. E. Kotikov, i wsp.
Wydane: (2008-03-01)