Amortized inference and model learning for probabilistic programming

<p>Probabilistic modeling lets us infer, predict and make decisions based on incomplete or noisy data. The goal of <em>probabilistic programming</em> is to automate inference in probabilistic models that are expressed as probabilistic programs---programs that can draw random values...

Повний опис

Бібліографічні деталі
Автор: Le, TA
Інші автори: Wood, F
Формат: Дисертація
Мова:English
Опубліковано: 2019