Tangent space and dimension estimation with the Wasserstein distance
Consider a set of points sampled independently near a smooth compact submanifold of Euclidean space. We provide mathematically rigorous bounds on the number of sample points required to estimate both the dimension and the tangent spaces of that manifold with high confidence. The algorithm for this e...
Главные авторы: | Lim, U, Oberhauser, H, Nanda, V |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Society for Industrial and Applied Mathematics
2024
|
Схожие документы
-
Tangent space and dimension estimation with the Wasserstein distance
по: Lim, U, и др.
Опубликовано: (2021) -
Wasserstein distance estimates for jump-diffusion processes
по: Breton, Jean-Christophe, и др.
Опубликовано: (2024) -
Estimation of Wasserstein distances in the Spiked Transport Model
по: Niles-Weed, Jonathan, и др.
Опубликовано: (2022) -
The Quantum Wasserstein Distance of Order 1
по: De Palma, Giacomo, и др.
Опубликовано: (2022) -
Explainable AI Using the Wasserstein Distance
по: Shion Samadder Chaudhury, и др.
Опубликовано: (2024-01-01)