Bridging max graph neural networks and datalog with negation
We consider a general class of data transformations based on Graph Neural Networks (GNNs), which can be used for a wide variety of tasks. An important question in this setting is characterising the expressive power of these transformations in terms of a suitable logic-based language. From a practica...
Egile Nagusiak: | Tena Cucala, D, Cuenca Grau, B |
---|---|
Formatua: | Conference item |
Hizkuntza: | English |
Argitaratua: |
IJCAI Organization
2024
|
Antzeko izenburuak
-
On the correspondence between monotonic max-sum GNNs and datalog
nork: Tena Cucala, D, et al.
Argitaratua: (2023) -
On the correspondence between monotonic max-sum GNNs and Datalog
nork: Tena Cucala, D, et al.
Argitaratua: (2023) -
Stratified negation in datalog with metric temporal operators
nork: Tena Cucala, D, et al.
Argitaratua: (2021) -
DatalogMTL with negation under stable models semantics
nork: Wałęga, PA, et al.
Argitaratua: (2021) -
The stable model semantics of datalog with metric temporal operators
nork: Walega, P, et al.
Argitaratua: (2023)