Bridging max graph neural networks and datalog with negation
We consider a general class of data transformations based on Graph Neural Networks (GNNs), which can be used for a wide variety of tasks. An important question in this setting is characterising the expressive power of these transformations in terms of a suitable logic-based language. From a practica...
主要な著者: | Tena Cucala, D, Cuenca Grau, B |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
IJCAI Organization
2024
|
類似資料
On the correspondence between monotonic max-sum GNNs and datalog
著者:: Tena Cucala, D, 等
出版事項: (2023)
著者:: Tena Cucala, D, 等
出版事項: (2023)
類似資料
-
On the correspondence between monotonic max-sum GNNs and datalog
著者:: Tena Cucala, D, 等
出版事項: (2023) -
On the correspondence between monotonic max-sum GNNs and Datalog
著者:: Tena Cucala, D, 等
出版事項: (2023) -
Stratified negation in datalog with metric temporal operators
著者:: Tena Cucala, D, 等
出版事項: (2021) -
DatalogMTL with negation under stable models semantics
著者:: Wałęga, PA, 等
出版事項: (2021) -
The stable model semantics of datalog with metric temporal operators
著者:: Walega, P, 等
出版事項: (2023)