Bridging max graph neural networks and datalog with negation
We consider a general class of data transformations based on Graph Neural Networks (GNNs), which can be used for a wide variety of tasks. An important question in this setting is characterising the expressive power of these transformations in terms of a suitable logic-based language. From a practica...
Главные авторы: | Tena Cucala, D, Cuenca Grau, B |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
IJCAI Organization
2024
|
Схожие документы
-
On the correspondence between monotonic max-sum GNNs and datalog
по: Tena Cucala, D, и др.
Опубликовано: (2023) -
On the correspondence between monotonic max-sum GNNs and Datalog
по: Tena Cucala, D, и др.
Опубликовано: (2023) -
Stratified negation in datalog with metric temporal operators
по: Tena Cucala, D, и др.
Опубликовано: (2021) -
DatalogMTL with negation under stable models semantics
по: Wałęga, PA, и др.
Опубликовано: (2021) -
The stable model semantics of datalog with metric temporal operators
по: Walega, P, и др.
Опубликовано: (2023)