Decomposition and completion of sum-of-squares matrices
This paper introduces a notion of decomposition and completion of sum-of-squares (SOS) matrices. We show that a subset of sparse SOS matrices with chordal sparsity patterns can be equivalently decomposed into a sum of multiple SOS matrices that are nonzero only on a principal submatrix. Also, the co...
Egile Nagusiak: | Zheng, Y, Fantuzzi, G, Papachristodoulou, A |
---|---|
Formatua: | Journal article |
Argitaratua: |
2018
|
Antzeko izenburuak
-
Fast ADMM for sum-of-squares programs using partial orthogonality
nork: Zheng, Y, et al.
Argitaratua: (2018) -
Exploiting sparsity in the coefficient matching conditions in sum-of-squares programming using ADMM
nork: Zheng, Y, et al.
Argitaratua: (2017) -
Block factor-width-two matrices and their applications to semidefinite and sum-of-squares optimization
nork: Zheng, Y, et al.
Argitaratua: (2022) -
Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials
nork: Zheng, Y, et al.
Argitaratua: (2019) -
On the construction of Lyapunov functions using the sum of squares decomposition
nork: Papachristodoulou, A, et al.
Argitaratua: (2002)