Superconformal anomalies from superconformal Chern-Simons polynomials

We consider the 4-dimensional N = 1 Lie superconformal algebra and search for completely “symmetric” (in the graded sense) 3-index invariant tensors. The solution we find is unique and we show that the corresponding invariant polynomial cubic in the generalized curvatures of superconformal gravity v...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Imbimbo, C, Rovere, D, Warman, A
Aineistotyyppi: Journal article
Kieli:English
Julkaistu: Springer 2024
Kuvaus
Yhteenveto:We consider the 4-dimensional N = 1 Lie superconformal algebra and search for completely “symmetric” (in the graded sense) 3-index invariant tensors. The solution we find is unique and we show that the corresponding invariant polynomial cubic in the generalized curvatures of superconformal gravity vanishes. Consequently, the associated Chern-Simons polynomial is a non-trivial anomaly cocycle. We explicitly compute this cocycle to all orders in the independent fields of superconformal gravity and establish that it is BRST equivalent to the so-called superconformal a-anomaly. We briefly discuss the possibility that the superconformal c-anomaly also admits a similar Chern-Simons formulation and the potential holographic, 5-dimensional, interpretation of our results.