Lasso-type recovery of sparse representations for high-dimensional data

The Lasso is an attractive technique for regularization and variable selection for high-dimensional data, where the number of predictor variables $p_n$ is potentially much larger than the number of samples $n$. However, it was recently discovered that the sparsity pattern of the Lasso estimator can...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Meinshausen, N, Yu, B
বিন্যাস: Journal article
ভাষা:English
প্রকাশিত: 2008

অনুরূপ উপাদানগুলি