Lasso-type recovery of sparse representations for high-dimensional data
The Lasso is an attractive technique for regularization and variable selection for high-dimensional data, where the number of predictor variables $p_n$ is potentially much larger than the number of samples $n$. However, it was recently discovered that the sparsity pattern of the Lasso estimator can...
Hauptverfasser: | Meinshausen, N, Yu, B |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
2008
|
Ähnliche Einträge
Ähnliche Einträge
-
High-dimensional graphs and variable selection with the Lasso
von: Meinshausen, N, et al.
Veröffentlicht: (2006) -
LASSO ISOtone for High Dimensional Additive Isotonic Regression
von: Fang, Z, et al.
Veröffentlicht: (2010) -
Relaxed Lasso.
von: Meinshausen, N
Veröffentlicht: (2007) -
Sparse representations of high dimensional neural data
von: Sandeep K. Mody, et al.
Veröffentlicht: (2022-05-01) -
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
von: Asma Gulraiz, et al.
Veröffentlicht: (2022-03-01)