Lasso-type recovery of sparse representations for high-dimensional data
The Lasso is an attractive technique for regularization and variable selection for high-dimensional data, where the number of predictor variables $p_n$ is potentially much larger than the number of samples $n$. However, it was recently discovered that the sparsity pattern of the Lasso estimator can...
Κύριοι συγγραφείς: | Meinshausen, N, Yu, B |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
2008
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
High-dimensional graphs and variable selection with the Lasso
ανά: Meinshausen, N, κ.ά.
Έκδοση: (2006) -
LASSO ISOtone for High Dimensional Additive Isotonic Regression
ανά: Fang, Z, κ.ά.
Έκδοση: (2010) -
Relaxed Lasso.
ανά: Meinshausen, N
Έκδοση: (2007) -
Sparse representations of high dimensional neural data
ανά: Sandeep K. Mody, κ.ά.
Έκδοση: (2022-05-01) -
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
ανά: Asma Gulraiz, κ.ά.
Έκδοση: (2022-03-01)