Lasso-type recovery of sparse representations for high-dimensional data
The Lasso is an attractive technique for regularization and variable selection for high-dimensional data, where the number of predictor variables $p_n$ is potentially much larger than the number of samples $n$. However, it was recently discovered that the sparsity pattern of the Lasso estimator can...
Príomhchruthaitheoirí: | Meinshausen, N, Yu, B |
---|---|
Formáid: | Journal article |
Teanga: | English |
Foilsithe / Cruthaithe: |
2008
|
Míreanna comhchosúla
Míreanna comhchosúla
-
High-dimensional graphs and variable selection with the Lasso
de réir: Meinshausen, N, et al.
Foilsithe / Cruthaithe: (2006) -
LASSO ISOtone for High Dimensional Additive Isotonic Regression
de réir: Fang, Z, et al.
Foilsithe / Cruthaithe: (2010) -
Relaxed Lasso.
de réir: Meinshausen, N
Foilsithe / Cruthaithe: (2007) -
Sparse representations of high dimensional neural data
de réir: Sandeep K. Mody, et al.
Foilsithe / Cruthaithe: (2022-05-01) -
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
de réir: Asma Gulraiz, et al.
Foilsithe / Cruthaithe: (2022-03-01)