Lasso-type recovery of sparse representations for high-dimensional data
The Lasso is an attractive technique for regularization and variable selection for high-dimensional data, where the number of predictor variables $p_n$ is potentially much larger than the number of samples $n$. However, it was recently discovered that the sparsity pattern of the Lasso estimator can...
मुख्य लेखकों: | Meinshausen, N, Yu, B |
---|---|
स्वरूप: | Journal article |
भाषा: | English |
प्रकाशित: |
2008
|
समान संसाधन
-
High-dimensional graphs and variable selection with the Lasso
द्वारा: Meinshausen, N, और अन्य
प्रकाशित: (2006) -
LASSO ISOtone for High Dimensional Additive Isotonic Regression
द्वारा: Fang, Z, और अन्य
प्रकाशित: (2010) -
Relaxed Lasso.
द्वारा: Meinshausen, N
प्रकाशित: (2007) -
Sparse representations of high dimensional neural data
द्वारा: Sandeep K. Mody, और अन्य
प्रकाशित: (2022-05-01) -
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
द्वारा: Asma Gulraiz, और अन्य
प्रकाशित: (2022-03-01)