Lasso-type recovery of sparse representations for high-dimensional data
The Lasso is an attractive technique for regularization and variable selection for high-dimensional data, where the number of predictor variables $p_n$ is potentially much larger than the number of samples $n$. However, it was recently discovered that the sparsity pattern of the Lasso estimator can...
主要な著者: | Meinshausen, N, Yu, B |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2008
|
類似資料
-
High-dimensional graphs and variable selection with the Lasso
著者:: Meinshausen, N, 等
出版事項: (2006) -
LASSO ISOtone for High Dimensional Additive Isotonic Regression
著者:: Fang, Z, 等
出版事項: (2010) -
Relaxed Lasso.
著者:: Meinshausen, N
出版事項: (2007) -
Sparse representations of high dimensional neural data
著者:: Sandeep K. Mody, 等
出版事項: (2022-05-01) -
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
著者:: Asma Gulraiz, 等
出版事項: (2022-03-01)