Lasso-type recovery of sparse representations for high-dimensional data
The Lasso is an attractive technique for regularization and variable selection for high-dimensional data, where the number of predictor variables $p_n$ is potentially much larger than the number of samples $n$. However, it was recently discovered that the sparsity pattern of the Lasso estimator can...
Asıl Yazarlar: | Meinshausen, N, Yu, B |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
2008
|
Benzer Materyaller
-
High-dimensional graphs and variable selection with the Lasso
Yazar:: Meinshausen, N, ve diğerleri
Baskı/Yayın Bilgisi: (2006) -
LASSO ISOtone for High Dimensional Additive Isotonic Regression
Yazar:: Fang, Z, ve diğerleri
Baskı/Yayın Bilgisi: (2010) -
Relaxed Lasso.
Yazar:: Meinshausen, N
Baskı/Yayın Bilgisi: (2007) -
Sparse representations of high dimensional neural data
Yazar:: Sandeep K. Mody, ve diğerleri
Baskı/Yayın Bilgisi: (2022-05-01) -
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
Yazar:: Asma Gulraiz, ve diğerleri
Baskı/Yayın Bilgisi: (2022-03-01)