SemanticPaint: interactive segmentation and learning of 3D world
We present a real-time, interactive system for the geometric reconstruction, object-class segmentation and learning of 3D scenes [Valentin et al. ]. Using our system, a user can walk into a room wearing a consumer depth camera and a virtual reality headset, and both densely reconstruct the 3D scene...
Главные авторы: | Valentin, J, Vineet, V, Cheng, M-M, Kim, D, Shotton, J, Kohli, P, Nießner, M, Criminisi, A, Izadi, S, Torr, P |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
Association for Computing Machinery
2015
|
Схожие документы
-
SemanticPaint: interactive 3D labeling and learning at your fingertips
по: Valentin, J, и др.
Опубликовано: (2015) -
SemanticPaint: interactive segmentation and learning of 3D worlds
по: Golodetz, S, и др.
Опубликовано: (2015) -
Exploiting uncertainty in regression forests for accurate camera relocalization
по: Valentin, J, и др.
Опубликовано: (2015) -
The semantic paintbrush: interactive 3D mapping and recognition in large outdoor spaces
по: Miksik, O, и др.
Опубликовано: (2015) -
Incremental dense semantic stereo fusion for large-scale semantic scene reconstruction.
по: Vineet, V, и др.
Опубликовано: (2015)