Gradient bounded dynamic programming with submodular and concave extensible value functions
We consider dynamic programming problems with finite, discrete-time horizons and prohibitively high-dimensional, discrete state-spaces for direct computation of the value function from the Bellman equation. For the case that the value function of the dynamic program is concave extensible and submodu...
Hlavní autoři: | Lebedev, D, Goulart, P, Margellos, K |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Elsevier
2021
|
Podobné jednotky
-
Gradient-bounded dynamic programming for submodular and concave extensible value functions with probabilistic performance guarantees
Autor: Lebedev, D, a další
Vydáno: (2021) -
Linear programming-based submodular extensions for marginal estimation
Autor: Pansari, P, a další
Vydáno: (2019) -
Submodular Secretary Problem and Extensions
Autor: Zadimoghaddam, Morteza, a další
Vydáno: (2010) -
Optimal submodular extensions for marginal estimation
Autor: Pansari, P, a další
Vydáno: (2018) -
Which submodular functions are expressible using binary submodular functions?
Autor: Živný, S, a další
Vydáno: (2008)