Gradient bounded dynamic programming with submodular and concave extensible value functions
We consider dynamic programming problems with finite, discrete-time horizons and prohibitively high-dimensional, discrete state-spaces for direct computation of the value function from the Bellman equation. For the case that the value function of the dynamic program is concave extensible and submodu...
主要な著者: | Lebedev, D, Goulart, P, Margellos, K |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Elsevier
2021
|
類似資料
-
Gradient-bounded dynamic programming for submodular and concave extensible value functions with probabilistic performance guarantees
著者:: Lebedev, D, 等
出版事項: (2021) -
Linear programming-based submodular extensions for marginal estimation
著者:: Pansari, P, 等
出版事項: (2019) -
Submodular Secretary Problem and Extensions
著者:: Zadimoghaddam, Morteza, 等
出版事項: (2010) -
Optimal submodular extensions for marginal estimation
著者:: Pansari, P, 等
出版事項: (2018) -
Which submodular functions are expressible using binary submodular functions?
著者:: Živný, S, 等
出版事項: (2008)