Continual unsupervised representation learning
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforcement learning tasks, and often assumes full knowl...
Päätekijät: | Rao, D, Visin, F, Rusu, AA, Teh, YW, Pascanu, R, Hadsell, R |
---|---|
Aineistotyyppi: | Conference item |
Julkaistu: |
Conference on Neural Information Processing Systems
2019
|
Samankaltaisia teoksia
-
Distral: robust multitask reinforcement learning
Tekijä: Teh, YW, et al.
Julkaistu: (2017) -
Continuous hierarchical representations with poincaré Variational Auto-Encoder
Tekijä: Mathieu,E, et al.
Julkaistu: (2019) -
Unsupervised learning of invariant representations
Tekijä: Anselmi, Fabio, et al.
Julkaistu: (2018) -
Kalman contrastive unsupervised representation learning
Tekijä: Mohammad Mahdi Jahani Yekta
Julkaistu: (2024-12-01) -
Unsupervised generative variational continual learning
Tekijä: Liu, Guimeng
Julkaistu: (2023)