Continual unsupervised representation learning
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforcement learning tasks, and often assumes full knowl...
मुख्य लेखकों: | Rao, D, Visin, F, Rusu, AA, Teh, YW, Pascanu, R, Hadsell, R |
---|---|
स्वरूप: | Conference item |
प्रकाशित: |
Conference on Neural Information Processing Systems
2019
|
समान संसाधन
-
Distral: robust multitask reinforcement learning
द्वारा: Teh, YW, और अन्य
प्रकाशित: (2017) -
Continuous hierarchical representations with poincaré Variational Auto-Encoder
द्वारा: Mathieu,E, और अन्य
प्रकाशित: (2019) -
Unsupervised learning of invariant representations
द्वारा: Anselmi, Fabio, और अन्य
प्रकाशित: (2018) -
Kalman contrastive unsupervised representation learning
द्वारा: Mohammad Mahdi Jahani Yekta
प्रकाशित: (2024-12-01) -
Unsupervised generative variational continual learning
द्वारा: Liu, Guimeng
प्रकाशित: (2023)