Continual unsupervised representation learning
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforcement learning tasks, and often assumes full knowl...
主要な著者: | Rao, D, Visin, F, Rusu, AA, Teh, YW, Pascanu, R, Hadsell, R |
---|---|
フォーマット: | Conference item |
出版事項: |
Conference on Neural Information Processing Systems
2019
|
類似資料
-
Distral: robust multitask reinforcement learning
著者:: Teh, YW, 等
出版事項: (2017) -
Continuous hierarchical representations with poincaré Variational Auto-Encoder
著者:: Mathieu,E, 等
出版事項: (2019) -
Unsupervised learning of invariant representations
著者:: Anselmi, Fabio, 等
出版事項: (2018) -
Kalman contrastive unsupervised representation learning
著者:: Mohammad Mahdi Jahani Yekta
出版事項: (2024-12-01) -
Unsupervised generative variational continual learning
著者:: Liu, Guimeng
出版事項: (2023)