Continual unsupervised representation learning
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforcement learning tasks, and often assumes full knowl...
Hoofdauteurs: | Rao, D, Visin, F, Rusu, AA, Teh, YW, Pascanu, R, Hadsell, R |
---|---|
Formaat: | Conference item |
Gepubliceerd in: |
Conference on Neural Information Processing Systems
2019
|
Gelijkaardige items
-
Distral: robust multitask reinforcement learning
door: Teh, YW, et al.
Gepubliceerd in: (2017) -
Continuous hierarchical representations with poincaré Variational Auto-Encoder
door: Mathieu,E, et al.
Gepubliceerd in: (2019) -
Unsupervised learning of invariant representations
door: Anselmi, Fabio, et al.
Gepubliceerd in: (2018) -
Kalman contrastive unsupervised representation learning
door: Mohammad Mahdi Jahani Yekta
Gepubliceerd in: (2024-12-01) -
Unsupervised generative variational continual learning
door: Liu, Guimeng
Gepubliceerd in: (2023)