Semantic segmentation of methane plumes with hyperspectral machine learning models
Methane is the second most important greenhouse gas contributor to climate change; at the same time its reduction has been denoted as one of the fastest pathways to preventing temperature growth due to its short atmospheric lifetime. In particular, the mitigation of active point-sources associated w...
Hauptverfasser: | Růžička, V, Mateo-Garcia, G, Gómez-Chova, L, Vaughan, A, Guanter, L, Markham, A |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Springer Nature
2023
|
Ähnliche Einträge
Ähnliche Einträge
-
Semantic segmentation of methane plumes with hyperspectral machine learning models
von: Vít Růžička, et al.
Veröffentlicht: (2023-11-01) -
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
von: A. Vaughan, et al.
Veröffentlicht: (2024-05-01) -
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
von: J. Roger, et al.
Veröffentlicht: (2024-02-01) -
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
von: E. Sánchez-García, et al.
Veröffentlicht: (2022-03-01) -
Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning
von: Jon Alvarez Justo, et al.
Veröffentlicht: (2025-01-01)