Semantic segmentation of methane plumes with hyperspectral machine learning models
Methane is the second most important greenhouse gas contributor to climate change; at the same time its reduction has been denoted as one of the fastest pathways to preventing temperature growth due to its short atmospheric lifetime. In particular, the mitigation of active point-sources associated w...
Κύριοι συγγραφείς: | Růžička, V, Mateo-Garcia, G, Gómez-Chova, L, Vaughan, A, Guanter, L, Markham, A |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
Springer Nature
2023
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Semantic segmentation of methane plumes with hyperspectral machine learning models
ανά: Vít Růžička, κ.ά.
Έκδοση: (2023-11-01) -
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
ανά: A. Vaughan, κ.ά.
Έκδοση: (2024-05-01) -
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
ανά: J. Roger, κ.ά.
Έκδοση: (2024-02-01) -
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
ανά: E. Sánchez-García, κ.ά.
Έκδοση: (2022-03-01) -
Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning
ανά: Jon Alvarez Justo, κ.ά.
Έκδοση: (2025-01-01)