Semantic segmentation of methane plumes with hyperspectral machine learning models
Methane is the second most important greenhouse gas contributor to climate change; at the same time its reduction has been denoted as one of the fastest pathways to preventing temperature growth due to its short atmospheric lifetime. In particular, the mitigation of active point-sources associated w...
主要な著者: | Růžička, V, Mateo-Garcia, G, Gómez-Chova, L, Vaughan, A, Guanter, L, Markham, A |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer Nature
2023
|
類似資料
-
Semantic segmentation of methane plumes with hyperspectral machine learning models
著者:: Vít Růžička, 等
出版事項: (2023-11-01) -
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
著者:: A. Vaughan, 等
出版事項: (2024-05-01) -
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
著者:: J. Roger, 等
出版事項: (2024-02-01) -
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
著者:: E. Sánchez-García, 等
出版事項: (2022-03-01) -
Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning
著者:: Jon Alvarez Justo, 等
出版事項: (2025-01-01)