IONet: Learning to Cure the Curse of Drift in Inertial Odometry
Inertial sensors play a pivotal role in indoor localization, which in turn lays the foundation for pervasive personal applications. However, low-cost inertial sensors, as commonly found in smartphones, are plagued by bias and noise, which leads to unbounded growth in error when accelerations are dou...
Автори: | Chen, C, Lu, X, Markham, A, Trigoni, N |
---|---|
Формат: | Conference item |
Опубліковано: |
Association for the Advancement of Artificial Intelligence
2018
|
Схожі ресурси
Схожі ресурси
-
Deep neural network based inertial odometry using low-cost inertial measurement units
за авторством: Chen, C, та інші
Опубліковано: (2019) -
VINet: Visual-inertial odometry as a sequence-to-sequence learning problem
за авторством: Clark, R, та інші
Опубліковано: (2017) -
Selective sensor fusion for neural visual-inertial odometry
за авторством: Chen, C, та інші
Опубліковано: (2019) -
DO IONet: 9-Axis IMU-Based 6-DOF Odometry Framework Using Neural Network for Direct Orientation Estimation
за авторством: Hong-Il Seo, та інші
Опубліковано: (2023-01-01) -
Low drift visual inertial odometry with UWB aided for indoor localization
за авторством: Bo Gao, та інші
Опубліковано: (2022-06-01)