Sum rules & Tauberian theorems at finite temperature
We study CFTs at finite temperature and derive explicit sum rules for one-point functions of operators by imposing the KMS condition and we explicitly estimate one-point functions for light operators. Turning to heavy operators we employ Tauberian theorems and compute the asymptotic OPE density for...
Hlavní autoři: | Marchetto, E, Miscioscia, A, Pomoni, E |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Springer
2024
|
Podobné jednotky
-
Sum rules & Tauberian theorems at finite temperature
Autor: Enrico Marchetto, a další
Vydáno: (2024-09-01) -
Broken (super) conformal Ward identities at finite temperature
Autor: Enrico Marchetto, a další
Vydáno: (2023-12-01) -
Tauberian remainder theorems /
Autor: 201372 Ganelius, Tord H.
Vydáno: (1971) -
Conformal line defects at finite temperature
Autor: Julien Barrat, Bartomeu Fiol, Enrico Marchetto, Alessio Miscioscia, Elli Pomoni
Vydáno: (2025-01-01) -
Ingham Tauberian theorem with an estimate for the error term
Autor: E. P. Balanzario, a další
Vydáno: (2003-01-01)