Stochastic order characterization of uniform integrability and tightness
We show that a family of random variables is uniformly integrable if and only if it is stochastically bounded in the increasing convex order by an integrable random variable. This result is complemented by proving analogous statements for the strong stochastic order and for power-integrable dominati...
Auteurs principaux: | Leskelä, L, Vihola, M |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2013
|
Documents similaires
-
Markovian stochastic approximation with expanding projections
par: Andrieu, C, et autres
Publié: (2014) -
Stochastic Order for a Multivariate Uniform Distributions Family
par: Luigi-Ionut Catana, et autres
Publié: (2020-08-01) -
Tight Euler tours in uniform hypergraphs - computational aspects
par: Zbigniew Lonc, et autres
Publié: (2017-09-01) -
Tight Bounds on the Convergence of Noisy Random Circuits to the Uniform Distribution
par: Abhinav Deshpande, et autres
Publié: (2022-12-01) -
Ordered sets as uniformities
par: Hušek Miroslav
Publié: (2018-03-01)