Stochastic order characterization of uniform integrability and tightness
We show that a family of random variables is uniformly integrable if and only if it is stochastically bounded in the increasing convex order by an integrable random variable. This result is complemented by proving analogous statements for the strong stochastic order and for power-integrable dominati...
Main Authors: | Leskelä, L, Vihola, M |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
2013
|
Registos relacionados
-
Markovian stochastic approximation with expanding projections
Por: Andrieu, C, et al.
Publicado em: (2014) -
Stochastic Order for a Multivariate Uniform Distributions Family
Por: Luigi-Ionut Catana, et al.
Publicado em: (2020-08-01) -
Tight Euler tours in uniform hypergraphs - computational aspects
Por: Zbigniew Lonc, et al.
Publicado em: (2017-09-01) -
Tight Bounds on the Convergence of Noisy Random Circuits to the Uniform Distribution
Por: Abhinav Deshpande, et al.
Publicado em: (2022-12-01) -
Ordered sets as uniformities
Por: Hušek Miroslav
Publicado em: (2018-03-01)