DeepAoANet: Learning angle of arrival from software defined radios with deep neural networks
Direction finding and positioning systems based on RF signals are significantly impacted by multipath propagation, particularly in indoor environments. Existing algorithms (e.g MUSIC) perform poorly in resolving Angle of Arrival (AoA) in the presence of multipath or when operating in a weak signal r...
Κύριοι συγγραφείς: | Dai, Z, He, Y, Tran, V, Trigoni, N, Markham, A |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
IEEE
2022
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
The angle of arrival estimation of frequency-hopping cooperative object based on software-defined radio
ανά: Rustamaji, κ.ά.
Έκδοση: (2024-04-01) -
MS-ANet: deep learning for automated multi-label thoracic disease detection and classification
ανά: Jing Xu, κ.ά.
Έκδοση: (2021-05-01) -
Autonomous software-defined radio receivers for deep space applications /
ανά: Hamkins, Jon, 1968-, κ.ά.
Έκδοση: (2006) -
MIB-ANet: A novel multi-scale deep network for nasal endoscopy-based adenoid hypertrophy grading
ανά: Mingmin Bi, κ.ά.
Έκδοση: (2023-04-01) -
DeepDeMod: BPSK Demodulation Using Deep Learning Over Software-Defined Radio
ανά: Arhum Ahmad, κ.ά.
Έκδοση: (2022-01-01)