DeepAoANet: Learning angle of arrival from software defined radios with deep neural networks
Direction finding and positioning systems based on RF signals are significantly impacted by multipath propagation, particularly in indoor environments. Existing algorithms (e.g MUSIC) perform poorly in resolving Angle of Arrival (AoA) in the presence of multipath or when operating in a weak signal r...
Main Authors: | Dai, Z, He, Y, Tran, V, Trigoni, N, Markham, A |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
IEEE
2022
|
פריטים דומים
-
The angle of arrival estimation of frequency-hopping cooperative object based on software-defined radio
מאת: Rustamaji, et al.
יצא לאור: (2024-04-01) -
MS-ANet: deep learning for automated multi-label thoracic disease detection and classification
מאת: Jing Xu, et al.
יצא לאור: (2021-05-01) -
Autonomous software-defined radio receivers for deep space applications /
מאת: Hamkins, Jon, 1968-, et al.
יצא לאור: (2006) -
MIB-ANet: A novel multi-scale deep network for nasal endoscopy-based adenoid hypertrophy grading
מאת: Mingmin Bi, et al.
יצא לאור: (2023-04-01) -
DeepDeMod: BPSK Demodulation Using Deep Learning Over Software-Defined Radio
מאת: Arhum Ahmad, et al.
יצא לאור: (2022-01-01)