DeepAoANet: Learning angle of arrival from software defined radios with deep neural networks
Direction finding and positioning systems based on RF signals are significantly impacted by multipath propagation, particularly in indoor environments. Existing algorithms (e.g MUSIC) perform poorly in resolving Angle of Arrival (AoA) in the presence of multipath or when operating in a weak signal r...
Hoofdauteurs: | Dai, Z, He, Y, Tran, V, Trigoni, N, Markham, A |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
IEEE
2022
|
Gelijkaardige items
-
The angle of arrival estimation of frequency-hopping cooperative object based on software-defined radio
door: Rustamaji, et al.
Gepubliceerd in: (2024-04-01) -
MS-ANet: deep learning for automated multi-label thoracic disease detection and classification
door: Jing Xu, et al.
Gepubliceerd in: (2021-05-01) -
Autonomous software-defined radio receivers for deep space applications /
door: Hamkins, Jon, 1968-, et al.
Gepubliceerd in: (2006) -
MIB-ANet: A novel multi-scale deep network for nasal endoscopy-based adenoid hypertrophy grading
door: Mingmin Bi, et al.
Gepubliceerd in: (2023-04-01) -
DeepDeMod: BPSK Demodulation Using Deep Learning Over Software-Defined Radio
door: Arhum Ahmad, et al.
Gepubliceerd in: (2022-01-01)