DeepAoANet: Learning angle of arrival from software defined radios with deep neural networks
Direction finding and positioning systems based on RF signals are significantly impacted by multipath propagation, particularly in indoor environments. Existing algorithms (e.g MUSIC) perform poorly in resolving Angle of Arrival (AoA) in the presence of multipath or when operating in a weak signal r...
Những tác giả chính: | Dai, Z, He, Y, Tran, V, Trigoni, N, Markham, A |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
IEEE
2022
|
Những quyển sách tương tự
-
The angle of arrival estimation of frequency-hopping cooperative object based on software-defined radio
Bằng: Rustamaji, et al.
Được phát hành: (2024-04-01) -
MS-ANet: deep learning for automated multi-label thoracic disease detection and classification
Bằng: Jing Xu, et al.
Được phát hành: (2021-05-01) -
Autonomous software-defined radio receivers for deep space applications /
Bằng: Hamkins, Jon, 1968-, et al.
Được phát hành: (2006) -
MIB-ANet: A novel multi-scale deep network for nasal endoscopy-based adenoid hypertrophy grading
Bằng: Mingmin Bi, et al.
Được phát hành: (2023-04-01) -
DeepDeMod: BPSK Demodulation Using Deep Learning Over Software-Defined Radio
Bằng: Arhum Ahmad, et al.
Được phát hành: (2022-01-01)