Selective sensor fusion for neural visual-inertial odometry
Deep learning approaches for Visual-Inertial Odometry (VIO) have proven successful, but they rarely focus on incorporating robust fusion strategies for dealing with imperfect input sensory data. We propose a novel end-to-end selective sensor fusion framework for monocular VIO, which fuses monocular...
Egile Nagusiak: | Chen, C, Rosa, S, Miao, Y, Lu, CX, Wu, W, Markham, A, Trigoni, N |
---|---|
Formatua: | Conference item |
Hizkuntza: | English |
Argitaratua: |
IEEE
2019
|
Antzeko izenburuak
-
Deep neural network based inertial odometry using low-cost inertial measurement units
nork: Chen, C, et al.
Argitaratua: (2019) -
VINet: Visual-inertial odometry as a sequence-to-sequence learning problem
nork: Clark, R, et al.
Argitaratua: (2017) -
IONet: Learning to Cure the Curse of Drift in Inertial Odometry
nork: Chen, C, et al.
Argitaratua: (2018) -
Visual inertial odometry and lidar inertial odometry for mobile robot
nork: Henawy, John Farid Nasry
Argitaratua: (2021) -
MotionTransformer: Transferring neural inertial tracking between domains
nork: Chen, C, et al.
Argitaratua: (2019)