Selective sensor fusion for neural visual-inertial odometry
Deep learning approaches for Visual-Inertial Odometry (VIO) have proven successful, but they rarely focus on incorporating robust fusion strategies for dealing with imperfect input sensory data. We propose a novel end-to-end selective sensor fusion framework for monocular VIO, which fuses monocular...
Главные авторы: | , , , , , , |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
IEEE
2019
|