Fast bayesian inference with batch bayesian quadrature via kernel recombination
Calculation of Bayesian posteriors and model evidences typically requires numerical integration. Bayesian quadrature (BQ), a surrogate-model-based approach to numerical integration, is capable of superb sample efficiency, but its lack of parallelisation has hindered its practical applications. In th...
Main Authors: | Adachi, M, Hayakawa, S, Jorgensen, M, Oberhauser, H, Osborne, MA |
---|---|
Formato: | Conference item |
Idioma: | English |
Publicado em: |
NeurIPS Proceedings
2022
|
Registos relacionados
-
Marginalising over stationary kernels with Bayesian quadrature
Por: Hamid, S, et al.
Publicado em: (2022) -
Bayesian model selection of lithium-ion battery models via Bayesian quadrature
Por: Adachi, M, et al.
Publicado em: (2023) -
Positively weighted kernel quadrature via subsampling
Por: Hayakawa, S, et al.
Publicado em: (2023) -
Sampling-based Nystrom approximation and kernel quadrature
Por: Hayakawa, S, et al.
Publicado em: (2023) -
Bayesian Gaussian processes for sequential prediction, optimisation and quadrature
Por: Osborne, M, et al.
Publicado em: (2010)