Understanding image representations by measuring their equivariance and equivalence
Despite the importance of image representations such as histograms of oriented gradients and deep Convolutional Neural Networks (CNN), our theoretical understanding of them remains limited. Aiming at filling this gap, we investigate three key mathematical properties of representations: equivariance,...
Auteurs principaux: | Lenc, K, Vedaldi, A |
---|---|
Format: | Conference item |
Publié: |
IEEE
2015
|
Documents similaires
-
Understanding Image Representations by Measuring Their Equivariance and Equivalence
par: Lenc, K, et autres
Publié: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
par: Thewlis, J, et autres
Publié: (2017) -
Equivariant quantum cohomology and the geometric Satake equivalence
par: Viscardi, Michael
Publié: (2016) -
Learning equivariant structured output SVM regressors
par: Vedaldi, A, et autres
Publié: (2012) -
Induction equivalence for equivariant D-modules on rigid analytic spaces
par: Ardakov, K
Publié: (2023)