Understanding image representations by measuring their equivariance and equivalence
Despite the importance of image representations such as histograms of oriented gradients and deep Convolutional Neural Networks (CNN), our theoretical understanding of them remains limited. Aiming at filling this gap, we investigate three key mathematical properties of representations: equivariance,...
Autori principali: | Lenc, K, Vedaldi, A |
---|---|
Natura: | Conference item |
Pubblicazione: |
IEEE
2015
|
Documenti analoghi
Documenti analoghi
-
Understanding Image Representations by Measuring Their Equivariance and Equivalence
di: Lenc, K, et al.
Pubblicazione: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
di: Thewlis, J, et al.
Pubblicazione: (2017) -
Equivariant quantum cohomology and the geometric Satake equivalence
di: Viscardi, Michael
Pubblicazione: (2016) -
Learning equivariant structured output SVM regressors
di: Vedaldi, A, et al.
Pubblicazione: (2012) -
Induction equivalence for equivariant D-modules on rigid analytic spaces
di: Ardakov, K
Pubblicazione: (2023)