Understanding image representations by measuring their equivariance and equivalence
Despite the importance of image representations such as histograms of oriented gradients and deep Convolutional Neural Networks (CNN), our theoretical understanding of them remains limited. Aiming at filling this gap, we investigate three key mathematical properties of representations: equivariance,...
Hoofdauteurs: | Lenc, K, Vedaldi, A |
---|---|
Formaat: | Conference item |
Gepubliceerd in: |
IEEE
2015
|
Gelijkaardige items
-
Understanding Image Representations by Measuring Their Equivariance and Equivalence
door: Lenc, K, et al.
Gepubliceerd in: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
door: Thewlis, J, et al.
Gepubliceerd in: (2017) -
Equivariant quantum cohomology and the geometric Satake equivalence
door: Viscardi, Michael
Gepubliceerd in: (2016) -
Learning equivariant structured output SVM regressors
door: Vedaldi, A, et al.
Gepubliceerd in: (2012) -
Induction equivalence for equivariant D-modules on rigid analytic spaces
door: Ardakov, K
Gepubliceerd in: (2023)