Understanding image representations by measuring their equivariance and equivalence
Despite the importance of image representations such as histograms of oriented gradients and deep Convolutional Neural Networks (CNN), our theoretical understanding of them remains limited. Aiming at filling this gap, we investigate three key mathematical properties of representations: equivariance,...
Автори: | Lenc, K, Vedaldi, A |
---|---|
Формат: | Conference item |
Опубліковано: |
IEEE
2015
|
Схожі ресурси
-
Understanding Image Representations by Measuring Their Equivariance and Equivalence
за авторством: Lenc, K, та інші
Опубліковано: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
за авторством: Thewlis, J, та інші
Опубліковано: (2017) -
Equivariant quantum cohomology and the geometric Satake equivalence
за авторством: Viscardi, Michael
Опубліковано: (2016) -
Learning equivariant structured output SVM regressors
за авторством: Vedaldi, A, та інші
Опубліковано: (2012) -
Induction equivalence for equivariant D-modules on rigid analytic spaces
за авторством: Ardakov, K
Опубліковано: (2023)