Modular Ax-Lindemann-Weierstrass with Derivatives
In a recent paper I established an analogue of the Lindemann- Weierstrass part of Ax-Schanuel for the elliptic modular function. Here I extend this to include its first and second derivatives. A generalization is given that includes exponential and Weierstrass elliptic functions as well. © 2013 by U...
Autore principale: | Pila, J |
---|---|
Natura: | Journal article |
Lingua: | English |
Pubblicazione: |
2013
|
Documenti analoghi
-
Ax-Lindemann for \mathcal{A}_g
di: Pila, J, et al.
Pubblicazione: (2012) -
Lindemann melting criterion in two dimensions
di: Sergey A. Khrapak
Pubblicazione: (2020-02-01) -
Properties of the Lindemann mechanism in phase space
di: M. S. Calder, et al.
Pubblicazione: (2011-02-01) -
Ax-Schanuel for the j-function
di: Pila, J, et al.
Pubblicazione: (2016) -
Ax-Schanuel for Shimura varieties
di: Mok, N, et al.
Pubblicazione: (2019)