Modular Ax-Lindemann-Weierstrass with Derivatives
In a recent paper I established an analogue of the Lindemann- Weierstrass part of Ax-Schanuel for the elliptic modular function. Here I extend this to include its first and second derivatives. A generalization is given that includes exponential and Weierstrass elliptic functions as well. © 2013 by U...
Yazar: | Pila, J |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
2013
|
Benzer Materyaller
-
Ax-Lindemann for \mathcal{A}_g
Yazar:: Pila, J, ve diğerleri
Baskı/Yayın Bilgisi: (2012) -
Lindemann melting criterion in two dimensions
Yazar:: Sergey A. Khrapak
Baskı/Yayın Bilgisi: (2020-02-01) -
Properties of the Lindemann mechanism in phase space
Yazar:: M. S. Calder, ve diğerleri
Baskı/Yayın Bilgisi: (2011-02-01) -
Ax-Schanuel for the j-function
Yazar:: Pila, J, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Ax-Schanuel for Shimura varieties
Yazar:: Mok, N, ve diğerleri
Baskı/Yayın Bilgisi: (2019)