Modular Ax-Lindemann-Weierstrass with Derivatives
In a recent paper I established an analogue of the Lindemann- Weierstrass part of Ax-Schanuel for the elliptic modular function. Here I extend this to include its first and second derivatives. A generalization is given that includes exponential and Weierstrass elliptic functions as well. © 2013 by U...
第一著者: | Pila, J |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2013
|
類似資料
-
Ax-Lindemann for \mathcal{A}_g
著者:: Pila, J, 等
出版事項: (2012) -
Lindemann melting criterion in two dimensions
著者:: Sergey A. Khrapak
出版事項: (2020-02-01) -
Properties of the Lindemann mechanism in phase space
著者:: M. S. Calder, 等
出版事項: (2011-02-01) -
Ax-Schanuel for the j-function
著者:: Pila, J, 等
出版事項: (2016) -
Ax-Schanuel for Shimura varieties
著者:: Mok, N, 等
出版事項: (2019)