Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models
<p style="text-align:justify;"> In this paper we study high-dimensional correlated random effects panel data models. Our setting is useful as it allows including time invariant covariates as under random effects yet allows for correlation between covariates and unobserved heterogene...
Главный автор: | Kock, A |
---|---|
Формат: | Journal article |
Опубликовано: |
Elsevier
2016
|
Схожие документы
-
Oracle inequalities for high dimensional vector autoregressions
по: Kock, A, и др.
Опубликовано: (2015) -
Uniform inference in high-dimensional dynamic panel data models with approximately sparse fixed effects
по: Kock, AB, и др.
Опубликовано: (2018) -
Oracle inequalities for convex loss functions with nonlinear targets
по: Caner, M, и др.
Опубликовано: (2015) -
Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models
по: Yijun Xiao, и др.
Опубликовано: (2020-11-01) -
On the Oracle Properties of Bayesian Random Forest for Sparse High-Dimensional Gaussian Regression
по: Oyebayo Ridwan Olaniran, и др.
Опубликовано: (2023-12-01)