Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trial

BACKGROUND:There is an urgent need for an effective tuberculosis (TB) vaccine. Heterologous prime-boost regimens induce potent cellular immunity. MVA85A is a candidate TB vaccine. This phase I clinical trial was designed to evaluate whether alternating aerosol and intradermal vaccination routes woul...

Full description

Bibliographic Details
Main Authors: Manjaly Thomas, Z, Satti, I, Marshall, J, Harris, S, Lopez Ramon, R, Hamidi, A, Minhinnick, A, Riste, M, Stockdale, L, Lawrie, A, Vermaak, S, Wilkie, M, Bettinson, H, McShane, H
Format: Journal article
Language:English
Published: Public Library of Science 2019
_version_ 1797096232438464512
author Manjaly Thomas, Z
Satti, I
Marshall, J
Harris, S
Lopez Ramon, R
Hamidi, A
Minhinnick, A
Riste, M
Stockdale, L
Lawrie, A
Vermaak, S
Wilkie, M
Bettinson, H
McShane, H
author_facet Manjaly Thomas, Z
Satti, I
Marshall, J
Harris, S
Lopez Ramon, R
Hamidi, A
Minhinnick, A
Riste, M
Stockdale, L
Lawrie, A
Vermaak, S
Wilkie, M
Bettinson, H
McShane, H
author_sort Manjaly Thomas, Z
collection OXFORD
description BACKGROUND:There is an urgent need for an effective tuberculosis (TB) vaccine. Heterologous prime-boost regimens induce potent cellular immunity. MVA85A is a candidate TB vaccine. This phase I clinical trial was designed to evaluate whether alternating aerosol and intradermal vaccination routes would boost cellular immunity to the Mycobacterium tuberculosis antigen 85A (Ag85A). METHODS AND FINDINGS:Between December 2013 and January 2016, 36 bacille Calmette-Guérin-vaccinated, healthy UK adults were randomised equally between 3 groups to receive 2 MVA85A vaccinations 1 month apart using either heterologous (Group 1, aerosol-intradermal; Group 2, intradermal-aerosol) or homologous (Group 3, intradermal-intradermal) immunisation. Bronchoscopy and bronchoalveolar lavage (BAL) were performed 7 days post-vaccination. Adverse events (AEs) and peripheral blood were collected for 6 months post-vaccination. The laboratory and bronchoscopy teams were blinded to treatment allocation. One participant was withdrawn and was replaced. Participants were aged 21-42 years, and 28/37 were female. In a per protocol analysis, aerosol delivery of MVA85A as a priming immunisation was well tolerated and highly immunogenic. Most AEs were mild local injection site reactions following intradermal vaccination. Transient systemic AEs occurred following vaccination by both routes and were most frequently mild. All respiratory AEs following primary aerosol MVA85A (Group 1) were mild. Boosting an intradermal MVA85A prime with an aerosolised MVA85A boost 1 month later (Group 2) resulted in transient moderate/severe respiratory and systemic AEs. There were no serious adverse events and no bronchoscopy-related complications. Only the intradermal-aerosol vaccination regimen (Group 2) resulted in modest, significant boosting of the cell-mediated immune response to Ag85A (p = 0.027; 95% CI: 28 to 630 spot forming cells per 1 × 106 peripheral blood mononuclear cells). All 3 regimens induced systemic cellular immune responses to the modified vaccinia virus Ankara (MVA) vector. Serum antibodies to Ag85A and MVA were only induced after intradermal vaccination. Aerosolised MVA85A induced significantly higher levels of Ag85A lung mucosal CD4+ and CD8+ T cell cytokines compared to intradermal vaccination. Boosting with aerosol-inhaled MVA85A enhanced the intradermal primed responses in Group 2. The magnitude of BAL MVA-specific CD4+ T cell responses was lower than the Ag85A-specific responses. A limitation of the study is that while the intradermal-aerosol regimen induced the most potent cellular Ag85A immune responses, we did not boost the last 3 participants in this group because of the AE profile. Timing of bronchoscopies aimed to capture peak mucosal response; however, peak responses may have occurred outside of this time frame. CONCLUSIONS:To our knowledge, this is the first human randomised clinical trial to explore heterologous prime-boost regimes using aerosol and systemic routes of administration of a virally vectored vaccine. In this trial, the aerosol prime-intradermal boost regime was well tolerated, but intradermal prime-aerosol boost resulted in transient but significant respiratory AEs. Aerosol vaccination induced potent cellular Ag85A-specific mucosal and systemic immune responses. Whilst the implications of inducing potent mucosal and systemic immunity for protection are unclear, these findings are of relevance for the development of aerosolised vaccines for TB and other respiratory and mucosal pathogens. TRIAL REGISTRATION:ClinicalTrials.gov NCT01954563.
first_indexed 2024-03-07T04:39:04Z
format Journal article
id oxford-uuid:d0fd4c71-8b3c-4b81-8a29-6f5b029f5216
institution University of Oxford
language English
last_indexed 2024-03-07T04:39:04Z
publishDate 2019
publisher Public Library of Science
record_format dspace
spelling oxford-uuid:d0fd4c71-8b3c-4b81-8a29-6f5b029f52162022-03-27T07:53:54ZAlternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trialJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:d0fd4c71-8b3c-4b81-8a29-6f5b029f5216EnglishSymplectic Elements at OxfordPublic Library of Science2019Manjaly Thomas, ZSatti, IMarshall, JHarris, SLopez Ramon, RHamidi, AMinhinnick, ARiste, MStockdale, LLawrie, AVermaak, SWilkie, MBettinson, HMcShane, HBACKGROUND:There is an urgent need for an effective tuberculosis (TB) vaccine. Heterologous prime-boost regimens induce potent cellular immunity. MVA85A is a candidate TB vaccine. This phase I clinical trial was designed to evaluate whether alternating aerosol and intradermal vaccination routes would boost cellular immunity to the Mycobacterium tuberculosis antigen 85A (Ag85A). METHODS AND FINDINGS:Between December 2013 and January 2016, 36 bacille Calmette-Guérin-vaccinated, healthy UK adults were randomised equally between 3 groups to receive 2 MVA85A vaccinations 1 month apart using either heterologous (Group 1, aerosol-intradermal; Group 2, intradermal-aerosol) or homologous (Group 3, intradermal-intradermal) immunisation. Bronchoscopy and bronchoalveolar lavage (BAL) were performed 7 days post-vaccination. Adverse events (AEs) and peripheral blood were collected for 6 months post-vaccination. The laboratory and bronchoscopy teams were blinded to treatment allocation. One participant was withdrawn and was replaced. Participants were aged 21-42 years, and 28/37 were female. In a per protocol analysis, aerosol delivery of MVA85A as a priming immunisation was well tolerated and highly immunogenic. Most AEs were mild local injection site reactions following intradermal vaccination. Transient systemic AEs occurred following vaccination by both routes and were most frequently mild. All respiratory AEs following primary aerosol MVA85A (Group 1) were mild. Boosting an intradermal MVA85A prime with an aerosolised MVA85A boost 1 month later (Group 2) resulted in transient moderate/severe respiratory and systemic AEs. There were no serious adverse events and no bronchoscopy-related complications. Only the intradermal-aerosol vaccination regimen (Group 2) resulted in modest, significant boosting of the cell-mediated immune response to Ag85A (p = 0.027; 95% CI: 28 to 630 spot forming cells per 1 × 106 peripheral blood mononuclear cells). All 3 regimens induced systemic cellular immune responses to the modified vaccinia virus Ankara (MVA) vector. Serum antibodies to Ag85A and MVA were only induced after intradermal vaccination. Aerosolised MVA85A induced significantly higher levels of Ag85A lung mucosal CD4+ and CD8+ T cell cytokines compared to intradermal vaccination. Boosting with aerosol-inhaled MVA85A enhanced the intradermal primed responses in Group 2. The magnitude of BAL MVA-specific CD4+ T cell responses was lower than the Ag85A-specific responses. A limitation of the study is that while the intradermal-aerosol regimen induced the most potent cellular Ag85A immune responses, we did not boost the last 3 participants in this group because of the AE profile. Timing of bronchoscopies aimed to capture peak mucosal response; however, peak responses may have occurred outside of this time frame. CONCLUSIONS:To our knowledge, this is the first human randomised clinical trial to explore heterologous prime-boost regimes using aerosol and systemic routes of administration of a virally vectored vaccine. In this trial, the aerosol prime-intradermal boost regime was well tolerated, but intradermal prime-aerosol boost resulted in transient but significant respiratory AEs. Aerosol vaccination induced potent cellular Ag85A-specific mucosal and systemic immune responses. Whilst the implications of inducing potent mucosal and systemic immunity for protection are unclear, these findings are of relevance for the development of aerosolised vaccines for TB and other respiratory and mucosal pathogens. TRIAL REGISTRATION:ClinicalTrials.gov NCT01954563.
spellingShingle Manjaly Thomas, Z
Satti, I
Marshall, J
Harris, S
Lopez Ramon, R
Hamidi, A
Minhinnick, A
Riste, M
Stockdale, L
Lawrie, A
Vermaak, S
Wilkie, M
Bettinson, H
McShane, H
Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trial
title Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trial
title_full Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trial
title_fullStr Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trial
title_full_unstemmed Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trial
title_short Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trial
title_sort alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis mva85a a phase i randomised controlled trial
work_keys_str_mv AT manjalythomasz alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT sattii alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT marshallj alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT harriss alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT lopezramonr alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT hamidia alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT minhinnicka alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT ristem alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT stockdalel alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT lawriea alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT vermaaks alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT wilkiem alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT bettinsonh alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial
AT mcshaneh alternateaerosolandsystemicimmunisationwitharecombinantviralvectorfortuberculosismva85aaphaseirandomisedcontrolledtrial