Comparison of domain adaptation techniques for white matter hyperintensity segmentation in brain MR images
Robust automated segmentation of white matter hyperintensities (WMHs) in different datasets (domains) is highly challenging due to differences in acquisition (scanner, sequence), population (WMH amount and location) and limited availability of manual segmentations to train supervised algorithms. In...
Asıl Yazarlar: | Sundaresan, V, Zamboni, G, Dinsdale, NK, Rothwell, PM, Griffanti, L, Jenkinson, M |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Elsevier
2021
|
Benzer Materyaller
-
Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images
Yazar:: Sundaresan, V, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Omni-supervised domain adversarial training for white matter hyperintensity segmentation in the UK Biobank
Yazar:: Sundaresan, V, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities
Yazar:: Griffanti, L, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference
Yazar:: Sundaresan, V, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Brain tumour segmentation using a triplanar ensemble of U-Nets on MR images
Yazar:: Sundaresan, V, ve diğerleri
Baskı/Yayın Bilgisi: (2021)